Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Biotechnol J ; 22(5): 1417-1432, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38193234

RESUMEN

Root architecture and function are critical for plants to secure water and nutrient supply from the soil, but environmental stresses alter root development. The phytohormone jasmonic acid (JA) regulates plant growth and responses to wounding and other stresses, but its role in root development for adaptation to environmental challenges had not been well investigated. We discovered a novel JA Upregulated Protein 1 gene (JAUP1) that has recently evolved in rice and is specific to modern rice accessions. JAUP1 regulates a self-perpetuating feed-forward loop to activate the expression of genes involved in JA biosynthesis and signalling that confers tolerance to abiotic stresses and regulates auxin-dependent root development. Ectopic expression of JAUP1 alleviates abscisic acid- and salt-mediated suppression of lateral root (LR) growth. JAUP1 is primarily expressed in the root cap and epidermal cells (EPCs) that protect the meristematic stem cells and emerging LRs. Wound-activated JA/JAUP1 signalling promotes crosstalk between the root cap of LR and parental root EPCs, as well as induces cell wall remodelling in EPCs overlaying the emerging LR, thereby facilitating LR emergence even under ABA-suppressive conditions. Elevated expression of JAUP1 in transgenic rice or natural rice accessions enhances abiotic stress tolerance and reduces grain yield loss under a limited water supply. We reveal a hitherto unappreciated role for wound-induced JA in LR development under abiotic stress and suggest that JAUP1 can be used in biotechnology and as a molecular marker for breeding rice adapted to extreme environmental challenges and for the conservation of water resources.


Asunto(s)
Ciclopentanos , Oryza , Oxilipinas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
2.
Mol Biol Evol ; 38(11): 4832-4846, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34240169

RESUMEN

The dispersal of rice (Oryza sativa) following domestication influenced massive social and cultural changes across South, East, and Southeast (SE) Asia. The history of dispersal across islands of SE Asia, and the role of Taiwan and the Austronesian expansion in this process remain largely unresolved. Here, we reconstructed the routes of dispersal of O. sativa ssp. japonica rice to Taiwan and the northern Philippines using whole-genome resequencing of indigenous rice landraces coupled with archaeological and paleoclimate data. Our results indicate that japonica rice found in the northern Philippines diverged from Indonesian landraces as early as 3,500 years before present (BP). In contrast, rice cultivated by the indigenous peoples of the Taiwanese mountains has complex origins. It comprises two distinct populations, each best explained as a result of admixture between temperate japonica that presumably came from northeast Asia, and tropical japonica from the northern Philippines and mainland SE Asia, respectively. We find that the temperate japonica component of these indigenous Taiwan populations diverged from northeast Asia subpopulations at about 2,600 BP, whereas gene flow from the northern Philippines had begun before ∼1,300 BP. This coincides with a period of intensified trade established across the South China Sea. Finally, we find evidence for positive selection acting on distinct genomic regions in different rice subpopulations, indicating local adaptation associated with the spread of japonica rice.


Asunto(s)
Oryza , Asia Sudoriental , Domesticación , Flujo Génico , Oryza/genética , Taiwán
3.
Bot Stud ; 62(1): 2, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33432466

RESUMEN

BACKGROUND: Weedy rice, a conspecific weedy counterpart of the cultivated rice (Oryza sativa L.), has been problematic in rice-production area worldwide. Although we started to know about the origin of some weedy traits for some rice-growing regions, an overall assessment of weedy trait-related loci was not yet available. On the other hand, the advances in sequencing technologies, together with community efforts, have made publicly available a large amount of genomic data. Given the availability of public data and the need of "weedy" allele mining for a better management of weedy rice, the objective of the present study was to explore the genetic architecture of weedy traits based on publicly available data, mainly from the 3000 Rice Genome Project (3K-RGP). RESULTS: Based on the results of population structure analysis, we have selected 1378 individuals from four sub-populations (aus, indica, temperate japonica, tropical japonica) without admixed genomic composition for genome-wide association analysis (GWAS). Five traits were investigated: awn color, seed shattering, seed threshability, seed coat color, and seedling height. GWAS was conducted for each sub-population × trait combination and we have identified 66 population-specific trait-associated SNPs. Eleven significant SNPs fell into an annotated gene and four other SNPs were close to a putative candidate gene (± 25 kb). SNPs located in or close to Rc were particularly predictive of the occurrence of seed coat color and our results showed that different sub-populations required different SNPs for a better seed coat color prediction. We compared the data of 3K-RGP to a publicly available weedy rice dataset. The profile of allele frequency, phenotype-genotype segregation of target SNP, as well as GWAS results for the presence and absence of awns diverged between the two sets of data. CONCLUSIONS: The genotype of trait-associated SNPs identified in this study, especially those located in or close to Rc, can be developed to diagnostic SNPs to trace the origin of weedy trait occurred in the field. The difference of results from the two publicly available datasets used in this study emphasized the importance of laboratory experiments to confirm the allele mining results based on publicly available data.

4.
PLoS One ; 15(9): e0239028, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32941524

RESUMEN

Rice domestication/adaptation is a good model for studies of the development and spread of this important crop. Mutations that caused morphological and physiological change, followed by human selection/expansion, finally led to the improvement of phenotypes suitable for different kinds of environments. We used the sequence information for Heading date 1 (Hd1) gene to reveal the association between sequence changes and flowering phenotypes of rice in different regions. Seven loss-of-function hd1 haplotypes had been reported. By data-mining the genome sequencing information in the public domain, we discovered 3 other types. These loss-of-function allele haplotypes are present in subtropical and tropical regions, which indicates human selection. Some of these haplotypes are present locally. However, types 7 and 13 are present in more than one-third of the world's rice accessions, including landraces and modern varieties. In the present study, phylogenetic, allele network and selection pressure analyses revealed that these two haplotypes might have occurred early in Southeastern Asia and then were introgressed in many local landraces in nearby regions. We also demonstrate that these haplotypes are present in weedy rice populations, which again indicates that these alleles were present in rice cultivation for long time. In comparing the wild rice sequence information, these loss-of-function haplotypes occurred in agro but were not from wild rice.


Asunto(s)
Flores/genética , Oryza/genética , Adaptación Fisiológica/genética , Alelos , Secuencia de Bases/genética , Mapeo Cromosómico/métodos , Frecuencia de los Genes/genética , Genes de Plantas/genética , Variación Genética/genética , Haplotipos/genética , Fenotipo , Filogenia , Proteínas de Plantas/genética
5.
Rice (N Y) ; 11(1): 57, 2018 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-30306280

RESUMEN

BACKGROUND: Genetic data for traditional Taiwanese (Formosan) agriculture is essential for tracing the origins on the East Asian mainland of the Austronesian language family, whose homeland is generally placed in Taiwan. Three main models for the origins of the Taiwanese Neolithic have been proposed: origins in coastal north China (Shandong); in coastal central China (Yangtze Valley), and in coastal south China. A combination of linguistic and agricultural evidence helps resolve this controversial issue. RESULTS: We report on botanically informed linguistic fieldwork of the agricultural vocabulary of Formosan aborigines, which converges with earlier findings in archaeology, genetics and historical linguistics to assign a lesser role for rice than was earlier thought, and a more important one for the millets. We next present the results of an investigation of domestication genes in a collection of traditional rice landraces maintained by the Formosan aborigines over a hundred years ago. The genes controlling awn length, shattering, caryopsis color, plant and panicle shapes contain the same mutated sequences as modern rice varieties everywhere else in the world, arguing against an independent domestication in south China or Taiwan. Early and traditional Formosan agriculture was based on foxtail millet, broomcorn millet and rice. We trace this suite of cereals to northeastern China in the period 6000-5000 BCE and argue, following earlier proposals, that the precursors of the Austronesians, expanded south along the coast from Shandong after c. 5000 BCE to reach northwest Taiwan in the second half of the 4th millennium BCE. This expansion introduced to Taiwan a mixed farming, fishing and intertidal foraging subsistence strategy; domesticated foxtail millet, broomcorn millet and japonica rice; a belief in the sacredness of foxtail millet; ritual ablation of the upper incisors in adolescents of both sexes; domesticated dogs; and a technological package including inter alia houses, nautical technology, and loom weaving. CONCLUSION: We suggest that the pre-Austronesians expanded south along the coast from that region after c. 5000 BCE to reach northwest Taiwan in the second half of the 4th millennium BCE.

7.
Nat Genet ; 50(2): 285-296, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29358651

RESUMEN

The genus Oryza is a model system for the study of molecular evolution over time scales ranging from a few thousand to 15 million years. Using 13 reference genomes spanning the Oryza species tree, we show that despite few large-scale chromosomal rearrangements rapid species diversification is mirrored by lineage-specific emergence and turnover of many novel elements, including transposons, and potential new coding and noncoding genes. Our study resolves controversial areas of the Oryza phylogeny, showing a complex history of introgression among different chromosomes in the young 'AA' subclade containing the two domesticated species. This study highlights the prevalence of functionally coupled disease resistance genes and identifies many new haplotypes of potential use for future crop protection. Finally, this study marks a milestone in modern rice research with the release of a complete long-read assembly of IR 8 'Miracle Rice', which relieved famine and drove the Green Revolution in Asia 50 years ago.


Asunto(s)
Productos Agrícolas/genética , Evolución Molecular , Variación Genética , Oryza/clasificación , Oryza/genética , Secuencia Conservada , Domesticación , Especiación Genética , Genoma de Planta , Filogenia
8.
Gigascience ; 6(8): 1-7, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28854617

RESUMEN

Rice, Oryza sativa L., is one of the most important crops in the world. With the rising world population, feeding people in a more sustainable and environmentally friendly way becomes increasingly important. Therefore, the rice research community needs to share resources to better understand the functions of rice genes that are the foundation for future agricultural biotechnology development, and one way to achieve this goal is via the extensive study of insertional mutants. We have constructed a large rice insertional mutant population in a japonica rice variety, Tainung 67. The collection contains about 93 000 mutant lines, among them 85% with phenomics data and 65% with flanking sequence data. We screened the phenotypes of 12 individual plants for each line grown under field conditions according to 68 subcategories and 3 quantitative traits. Both phenotypes and integration sites are searchable in the Taiwan Rice Insertional Mutants Database. Detailed analyses of phenomics data, T-DNA flanking sequences, and whole-genome sequencing data for rice insertional mutants can lead to the discovery of novel genes. In addition, studies of mutant phenotypes can reveal relationships among varieties, cultivation locations, and cropping seasons.


Asunto(s)
ADN Bacteriano/genética , Estudios de Asociación Genética/métodos , Mutación , Oryza/genética , Fenotipo , Bases de Datos Genéticas , Variación Genética , Genoma de Planta , Genómica/métodos , Mutagénesis Insercional , Fitomejoramiento , Plantas Modificadas Genéticamente , Control de Calidad , Carácter Cuantitativo Heredable , Reproducibilidad de los Resultados
9.
Plant Sci ; 242: 187-194, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26566836

RESUMEN

Rice is a facultative short-day plant, and it requires a photoperiod shorter than the critical day length to get flowering. Sensitivity to photoperiod has been suggested as a major selection target in cultivated or weedy rice. The modern rice varieties in Taiwan may be cultivated twice a year. These varieties contain loss-of-function of two important flowering-time related genes, Heading date 1 (Hd1) and Early heading date 1 (Ehd1), and are mainly from a mega variety, Taichung 65. However, the parental lines of this variety were sensitive to photoperiod, thus, how Taichung 65 loss its sensitivity is a mystery. In this study, we used accession-specific single nucleotide polymorphism analysis to reveal the gene flow that occurred between different rice accessions decades ago and demonstrate that two landraces introgressed during the breeding process, which led to the loss of photoperiod sensitivity. Both Hd1 and Ehd1 may be important during artificial selection for flowering time, especially in a subtropical region such as Taiwan. This is a good example of introgression playing important roles during rice domestication.


Asunto(s)
Flores/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Proteínas de Plantas/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Flujo Génico , Genoma de Planta/genética , Genotipo , Mutación INDEL , Oryza/clasificación , Fotoperiodo , Filogenia , Fitomejoramiento/métodos , Polimorfismo de Nucleótido Simple , Especificidad de la Especie , Factores de Tiempo
10.
Methods Mol Biol ; 678: 129-38, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-20931377

RESUMEN

With the completion of the rice genome sequencing project, the next major challenge is the large-scale determination of gene function. A systematic phenotypic profiling of mutant collections will provide major insights into gene functions important for crop growth or production. Thus, detailed phenomics analysis is the key to functional genomics. Currently, the two major types of rice mutant collections are insertional mutants and chemical or irradiation-induced mutants. Here we describe how to manipulate a rice mutant population, including conducting phenomics studies and the subsequent propagation and seed storage. We list the phenotypes screened and also describe how to collect data systematically for a database of the qualitative and quantitative phenotypic traits. Thus, data on mutant lines, phenotypes, and segregation rate for all kinds of mutant populations, as well as integration sites for insertional mutant populations, would be searchable, and the collection would be a good resource for rice functional genomics study.


Asunto(s)
Genoma de Planta/genética , Genómica/métodos , Oryza/genética , Mutagénesis/efectos de los fármacos , Mutagénesis/efectos de la radiación , Oryza/efectos de los fármacos , Oryza/efectos de la radiación , Fenotipo , Semillas/genética , Semillas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...